A company owns a refrigeration system whose refrigeration capacity is 200 tons (1 ton of refrigeration = 211 kJ/min), and you are to design a forced-air cooling system for fruits whose diameters

A company owns a refrigeration system whose refrigeration capacity is 200 tons (1 ton of refrigeration = 211 kJ/min), and you are to design a forced-air cooling system for fruits whose diameters do not exceed 7 cm under the following conditions: The fruits are to be cooled from 28°C to an average temperature of 8°C. The air temperature is to remain above -2°C and below 10°C at all times, and the velocity of air approaching the fruits must remain under 2 m/s. The cooling section can be as wide as 3.5 m and as high as 2 m. Assuming reasonable values for the average fruit density, specific heat, and porosity (the fraction of air volume in a box), recommend reasonable values for (a) the air velocity approaching the cooling section, (b) the product-cooling capacity of the system, in kg · fruit/h, and (c) the volume flow rate of air.

Notes:

Consider the fruit in question as apples, consider the porosity of the fixed course to be originated at random, and treat apples as a global system (in terms of the heat transfer).

find the cost of your paper

Calculate the maximum achievable bridge out-of-balance voltage for an applied torque T of 103 N m given the following

Four strain gauges, with specification given below, are available to measure the torque on a cylindrical shaft 4 cm in diameter connecting a motor and load. (a) Draw clearly labelled….

Find the gain and phase characteristics of the maintaining amplifier.

A solid-state capacitive humidity sensor has a capacitance given by: C = 1.7 RH + 365pF where RH is the percentage relative humidity. The sensor has an associated parallel resistance….

calculate the mean velocity of the gas at maximum flow rate

A pitot tube is used to measure the mean velocity of high pressure gas in a 0.15 m diameter pipe. At maximum flow rate the mean pitot differential pressure is….