#Sales Offer!| Get upto 25% Off:

A metal cannonball of mass m rests next to a tree at the very edge of a cliff 36.0 m above the surface of the ocean. In an effort to knock the cannonball off the cliff, some children tie one end of a rope around a stone of mass 80.0 kg and the other end to a tree limb just above the cannonball. They tighten the rope so that the stone just clears the ground and hangs next to the cannonball. The children manage to swing the stone back until it is held at rest 1.80 m above the ground. The children release the stone, which then swings down and makes a head-on, elastic collision with the cannonball, projecting it horizontally off the cliff. The cannonball lands in the ocean a horizontal distance R away from its initial position. (a) Find the horizontal component R of the cannonball’s displacement as it depends on m. (b) What is the maximum possible value for R, and (c) to what value of m does it correspond? (d) For the stone– cannonball–Earth system, is mechanical energy conserved throughout the process? Is this principle sufficient to solve the entire problem? Explain. (e) What if? Show that R does not depend on the value of the gravitational acceleration. Is this result remarkable? State how one might make sense of it.

Found something interesting ?

• On-time delivery guarantee
• PhD-level professional writers
• Free Plagiarism Report

• 100% money-back guarantee
• Absolute Privacy & Confidentiality
• High Quality custom-written papers

Related Model Questions

Feel free to peruse our college and university model questions. If any our our assignment tasks interests you, click to place your order. Every paper is written by our professional essay writers from scratch to avoid plagiarism. We guarantee highest quality of work besides delivering your paper on time.

Grab your Discount!

25% Coupon Code: SAVE25
get 25% !!