Lecture # 18 Handout   by J.W. Van Zee 19‐Sep‐17

Problem 4.2.  Statement: FIND: For steady flow through a heat exchanger at approximately atmospheric pressure, what tis the final temperature

for the flowing: a. When 800 kJ of heat is added to 10 moles of ethylene initially at 200C Ethylene = C2H4 b. When 2,500 kJ is added to 15 moles of 1 butene initially at 260C. 1‐butene =  c. When 10^6  Btu is added to 40 lb mole of ethylene initially at 500 F. Ethylene = C2H4

Known: Q, kJ=  varies by part Properties: schematic: T_0, C varies by part Heat capacity coeffficents:

T_0, K varies by part Ethylene 1‐Butene T,K = varies by part T=? n, moles=  varies by part A 1.424 1.967

B 1.44E‐02 3.16E‐02 Assumptoins: none C ‐4.39E‐06 ‐9.87E‐06

D 0 0 Q varies by part Analysis:

Use equation 4.7 or equaiton 4.8. Here we use equation 4.7 to intergrate the Cp/R from  T0  = 200C to T . This results from an energy balance on the heat exchanger for a flow system Part c.  500 F= 533.13 K which yields     0=Q + ΔH and  ΔH = H_in ‐ H _out and  where becuae of the integral: dH =  ‐Cp*dT. Part c.  1 btu =  1055 J

Part c.  1 lb mole = 453.6 g moles Part a.  n, mole =   10 Part b.  n, mole =   15 Part c.  n, mole =   18,144

Q, kJ = 800 Q, kJ = 2,500 Q, kJ = 1,055,040                T_in,K 473.15 solving for T_out,K T_in,K 533.15 solving for T_out,K T_in,K 533.13 solving for T_out,K T_out,K 1374.4476 T_out,K 1413.8 T_out,K 1202.746053 R, J/mol‐K = 8.3143 R, J/mol‐K = 8.3143 R, J/mol‐K  8.3143 τ = T_out/T_in = 2.90488767 τ = T_out/T_in 2.6517 τ = T_out/T 2.256008953 τ ‐ 1= 1.90488767 τ ‐ 1= 1.6517 τ ‐ 1= 1.256008953 τ ^2‐ 1= 7.43837237 τ ^2‐ 1= 6.0316 τ ^2‐ 1= 4.089576397 τ^3 ‐ 1 = 23.5125238 τ^3 ‐ 1 = 17.6457 τ^3 ‐ 1 = 10.48212992 (τ‐1)/(T_in*τ) 0.00138593 (τ‐1)/(T_in*τ) 0.0012 (τ‐1)/(T_in* 0.001044284

Equation 4.7 terms Equation 4.7 terms Equation 4.7 terms A*T_in*(τ‐1) = 1283.4 A*T_in*(τ‐1) = 1732.2 A*T_in*(τ‐1) = 953.5 B*T_in^2*(τ^2‐1)/2 = 11984.7 B*T_in^2*(τ^2‐1)/2 = 27114.3 B*T_in^2*(τ^2‐1)/2 = 8365.6 C*T_in^3*(τ^3‐1)/3 = ‐3646.17 C*T_in^3*(τ^3‐1)/3 = ‐8800.63 C*T_in^3*(τ^3‐1)/3 = ‐2325.36 D*(τ‐1)/(T_in*τ) = 0 D*(τ‐1)/(T_in*τ) = 0 D*(τ‐1)/(T_in*τ) = 0 sum of terms= 9,622              sum of terms= 20,046              sum of terms= 6,994                       R*sum of terms, J = 80,000            R*sum of terms, J = 166,667            R*sum of terms, J = 58,148                     n*R*sum of terms, J = 800,000          n*R*sum of terms, J = 2,500,000        n*R*sum of terms, J = 1,055,040,483

f(T) = Q  ‐ n*R*sum of terms =  0                      f(T) = Q  ‐ n*R*sum of terms =  0.03                  f(T) = Q  ‐ n*R*sum of terms =  (81)                            use solve to find this value of T_out in K= 1374 use solve to find this value of T_out in K= 1414 use solve to find this value of T_out in K= 1203

Found something interesting ?

• On-time delivery guarantee
• PhD-level professional writers
• Free Plagiarism Report

• 100% money-back guarantee
• Absolute Privacy & Confidentiality
• High Quality custom-written papers

Related Model Questions

Feel free to peruse our college and university model questions. If any our our assignment tasks interests you, click to place your order. Every paper is written by our professional essay writers from scratch to avoid plagiarism. We guarantee highest quality of work besides delivering your paper on time.

Grab your Discount!

25% Coupon Code: SAVE25
get 25% !!