what is the final temperature  for the flowing

Lecture # 18 Handout   by J.W. Van Zee 19‐Sep‐17

Problem 4.2.  Statement: FIND: For steady flow through a heat exchanger at approximately atmospheric pressure, what tis the final temperature

for the flowing: a. When 800 kJ of heat is added to 10 moles of ethylene initially at 200C Ethylene = C2H4 b. When 2,500 kJ is added to 15 moles of 1 butene initially at 260C. 1‐butene =  c. When 10^6  Btu is added to 40 lb mole of ethylene initially at 500 F. Ethylene = C2H4

Known: Q, kJ=  varies by part Properties: schematic: T_0, C varies by part Heat capacity coeffficents:

T_0, K varies by part Ethylene 1‐Butene T,K = varies by part T=? n, moles=  varies by part A 1.424 1.967

B 1.44E‐02 3.16E‐02 Assumptoins: none C ‐4.39E‐06 ‐9.87E‐06

D 0 0 Q varies by part Analysis:

Use equation 4.7 or equaiton 4.8. Here we use equation 4.7 to intergrate the Cp/R from  T0  = 200C to T . This results from an energy balance on the heat exchanger for a flow system Part c.  500 F= 533.13 K which yields     0=Q + ΔH and  ΔH = H_in ‐ H _out and  where becuae of the integral: dH =  ‐Cp*dT. Part c.  1 btu =  1055 J

Part c.  1 lb mole = 453.6 g moles Part a.  n, mole =   10 Part b.  n, mole =   15 Part c.  n, mole =   18,144

Q, kJ = 800 Q, kJ = 2,500 Q, kJ = 1,055,040                T_in,K 473.15 solving for T_out,K T_in,K 533.15 solving for T_out,K T_in,K 533.13 solving for T_out,K T_out,K 1374.4476 T_out,K 1413.8 T_out,K 1202.746053 R, J/mol‐K = 8.3143 R, J/mol‐K = 8.3143 R, J/mol‐K  8.3143 τ = T_out/T_in = 2.90488767 τ = T_out/T_in 2.6517 τ = T_out/T 2.256008953 τ ‐ 1= 1.90488767 τ ‐ 1= 1.6517 τ ‐ 1= 1.256008953 τ ^2‐ 1= 7.43837237 τ ^2‐ 1= 6.0316 τ ^2‐ 1= 4.089576397 τ^3 ‐ 1 = 23.5125238 τ^3 ‐ 1 = 17.6457 τ^3 ‐ 1 = 10.48212992 (τ‐1)/(T_in*τ) 0.00138593 (τ‐1)/(T_in*τ) 0.0012 (τ‐1)/(T_in* 0.001044284

Equation 4.7 terms Equation 4.7 terms Equation 4.7 terms A*T_in*(τ‐1) = 1283.4 A*T_in*(τ‐1) = 1732.2 A*T_in*(τ‐1) = 953.5 B*T_in^2*(τ^2‐1)/2 = 11984.7 B*T_in^2*(τ^2‐1)/2 = 27114.3 B*T_in^2*(τ^2‐1)/2 = 8365.6 C*T_in^3*(τ^3‐1)/3 = ‐3646.17 C*T_in^3*(τ^3‐1)/3 = ‐8800.63 C*T_in^3*(τ^3‐1)/3 = ‐2325.36 D*(τ‐1)/(T_in*τ) = 0 D*(τ‐1)/(T_in*τ) = 0 D*(τ‐1)/(T_in*τ) = 0 sum of terms= 9,622              sum of terms= 20,046              sum of terms= 6,994                       R*sum of terms, J = 80,000            R*sum of terms, J = 166,667            R*sum of terms, J = 58,148                     n*R*sum of terms, J = 800,000          n*R*sum of terms, J = 2,500,000        n*R*sum of terms, J = 1,055,040,483

f(T) = Q  ‐ n*R*sum of terms =  0                      f(T) = Q  ‐ n*R*sum of terms =  0.03                  f(T) = Q  ‐ n*R*sum of terms =  (81)                            use solve to find this value of T_out in K= 1374 use solve to find this value of T_out in K= 1414 use solve to find this value of T_out in K= 1203

find the cost of your paper

Prepare a report to the board of directors

Each project has two separate phases of equal cost and providing equal cash flow benefits. The board is willing to consider adopting the first phase of any project without the….

explain why individual curves respond the way they do in response to the malfunction.

This assignment will take the form of a Zoom video. The video will consist of six parts; each involving a run of the simulator starting from the same steady state….

Calculate: 1- T out hot 2- T out cold 3- q

A propane / propylene mixture consists of 95% propane that has a flow rate of 1.31083 kg/s is initially at 54.44 °C. By inserting it in the shell side of….