Outdoor Inn, a camping equipment manufacturer in southern Utah, is developing a production schedule for a popular type of tent, the Double Inn. Orders have been received for 180 of these to be delivered at the end of this month, 220 to be delivered at the end of next month, and 240 to be delivered at the end of the month after that. This tent may be produced at a cost of $120, and the maximum number of tents that can be produced in a month is 230. The company may produce some extra tents in one month and keep them in storage until the next month. The cost for keeping these in inventory for one month is estimated to be $6 per tent for each tent left at the end of the month. Formulate this as an LP problem to minimize cost while meeting demand and not exceeding the monthly production capacity. Solve it using any computer software.
(Hint: Define variables to represent the number of tents left over at the end of each month.)