1.       Show that the effect of the bias term can be accounted for by adding a constant amount to each entry of the n × n kernel similarity matrix when using kernels with linear models.

2.       Formulate a variation of regularized least-squares classification in which L1-loss is used instead of L2-loss. How would you expect each of these methods to behave in the presence of outliers? Which of these methods is more similar to SVMs with hinge loss? Discuss the challenges of using gradient-descent with this problem as compared to the regularized least-squares formulation.

Found something interesting ?

• On-time delivery guarantee
• PhD-level professional writers
• Free Plagiarism Report

• 100% money-back guarantee
• Absolute Privacy & Confidentiality
• High Quality custom-written papers

Related Model Questions

Feel free to peruse our college and university model questions. If any our our assignment tasks interests you, click to place your order. Every paper is written by our professional essay writers from scratch to avoid plagiarism. We guarantee highest quality of work besides delivering your paper on time.

Grab your Discount!

25% Coupon Code: SAVE25
get 25% !!