1.       Suppose that you perform least-squares regression without regularization with the loss function n i=1(yi − W · Xi)2, but you add spherical Gaussian noise with variance λ to each feature. Show that the expected loss with the perturbed features provides a loss function that is identical to that of L2-regularization. Use this result to provide an intuitive explanation of the connection between regularization and noise addition.

2.       Show how to use the representer theorem to derive the closed-form solution of kernel least-squares regression.

3.       Discuss the effect on the bias and variance by making the following changes to a classification algorithm: (a) Increasing the regularization parameter in a support vector machine, (b) Increasing the Laplacian smoothing parameter in a n¨ıve Bayes classifier, (c) Increasing the depth of a decision tree, (d) Increasing the number of antecedents in a rule, (e) Reducing the bandwidth σ, when using the Gaussian kernel in conjunction with a support vector machine.

Found something interesting ?

• On-time delivery guarantee
• PhD-level professional writers
• Free Plagiarism Report

• 100% money-back guarantee
• Absolute Privacy & Confidentiality
• High Quality custom-written papers

Related Model Questions

Feel free to peruse our college and university model questions. If any our our assignment tasks interests you, click to place your order. Every paper is written by our professional essay writers from scratch to avoid plagiarism. We guarantee highest quality of work besides delivering your paper on time.

Grab your Discount!

25% Coupon Code: SAVE25
get 25% !!