import json
import datetime as dt
import pandas as pd
import numpy as np
import imp
backend = imp.load_compiled(‘flagwatch_back_end’, ‘__pycache__/flagwatch_back_end.cpython-38.pyc’)
# DO NOT MODIFY
# Create a global FlagWatch API object. This object supports three methods:
# 1. fw.describe_endpoints()
# 2. fw.describe_sample_data()
# 3. fw.request(URL)
fw = backend.FlagWatch(STUDENT_ID)
########################################################################
# Part 1
########################################################################
def endpoint(requested_date, requested_code):
“”” Get the FlagWatch URL endpoint for this date and item
Parameters
———-
requested_date : datetime.datetime
The date for the desired FlagWatch data
requested_code: str
The three characters code for either the FlagWatch ticker or exchange as specified by
your API.
Returns
——-
str
The FlagWatch endpoint URL beginning with `www.flagwatch.org`.
Notes
—–
– You should assume that the requested_code is three characters. However,
it may be upper cased, lower cased, or have some mixture of case.
“””
pass
########################################################################
# Part 2
########################################################################
def get_single_data_item(requested_date, requested_ticker, requested_exchange, requested_price_type):
“”” Get the FlagWatch price data for this date, ticker, exchange, and pricing type
Parameters
———-
requested_date : datetime.datetime
The date for the desired FlagWatch data
requested_ticker: str
The three characters code for the FlagWatch ticker of interest.
requested_exchange: str
The three characters code for the FlagWatch exchange of interest.
requested_price_type: str
The type of pricing information required: “OPEN”, “CLOSE”, “HIGH”, or “LOW”
Returns
——-
float
The price information.
Notes
—–
– You should assume that the requested_ticker and requested_exchange are
each three characters long. However, these may be upper cased, lower
cased, or have some mixture of case. Similarly, requested_price_type
will be one of the four options, but may be of any case structure.
Hint
—-
You should use one of the methods of the instance `fw`. Remember that
the method fw.describe_sample_data() returns an EXAMPLE. You do not
want to use that method here.
“””
pass
########################################################################
# Part 3
########################################################################
def get_time_series(requested_ticker, requested_exchange, requested_price_type):
“”” Get the FlagWatch timeseries for 2020 January for the requested ticker,
exchange, and price type
Parameters
———-
requested_ticker: str
The three characters code for the FlagWatch ticker of interest.
requested_exchange: str
The three characters code for the FlagWatch exchange of interest.
requested_price_type: str
The type of pricing information required: “OPEN”, “CLOSE”, “HIGH”, or “LOW”
Returns
——-
pandas.Series
The desired time series with a sorted datetime index.
Notes
—–
– You should assume that the requested_ticker and requested_exchange are
each three characters long. However, these may be upper cased, lower cased,
or have some mixture of case. Similarly, requested_price_type will be one of
the four options, but may be of any case structure.
Hints
—–
– The series will contain prices for all calendar days in January 2020
(from day 1 to day 31).
– Remember that the function `get_single_data_item` returns the price
for a single day
– Remember that the date parameter in `get_single_data_item` is a
datetime instance
“””
pass
########################################################################
# Part 4
########################################################################
def get_dataframe(ticker_exchange_price_combinations):
“”” Get a FlagWatch Pandas.DataFrame for 2020 January using the requested
ticker-exchange-price combinations.
Parameters
———-
ticker_exchange_price_combinations : list
A list of tuples where each tuple is a (ticker, exchange, price)
combination. For example, (“bic”, “got”, “open”) is the tuple for
bicoulour, Mt. GoT, and open price. (“str”, “cis”, “high”) is the tuple
for stripes, coininsecure, and high price.
Returns
——-
pandas.DataFrame
The desired data DataFrame with a chronological datetime index.
The column labels should be formatted as
“:”
where:
stands for the ticker code (upper case)
stands for the exchange code (upper case)
stands for the type of quote (upper case)
Examples:
– A (“bic”, “got”, “open”) tuple results in a column named “BICGOT:OPEN”
– A (“str”, “cis”, “high”) tuple results in a column named “STRCIS:HIGH”
“””
pass

Found something interesting ?

• On-time delivery guarantee
• PhD-level professional writers
• Free Plagiarism Report

• 100% money-back guarantee
• Absolute Privacy & Confidentiality
• High Quality custom-written papers

Related Model Questions

Feel free to peruse our college and university model questions. If any our our assignment tasks interests you, click to place your order. Every paper is written by our professional essay writers from scratch to avoid plagiarism. We guarantee highest quality of work besides delivering your paper on time.

Grab your Discount!

25% Coupon Code: SAVE25
get 25% !!