(Auxiliary Functions and Moments). For a random variable X, the characteristic function E(eitX) always exists since eitX is a bounded random variable (with complex values). The moment generating function E(etx) only exists if X has moments of all orders and those moments do not grow too fast.

a)      If Z is Gaussian with mean 0 and variance 1, find the moment generating function of Z and use it to find the first six moments of Z. In particular, show that E(Z4) = 3, a fact that we will need later. [Hint: Series expansion can be easier than differentiation.]

b)      If W = Z4 , then W has moments of all orders, since Z has all moments. Show nevertheless that W does not have a moment generating function.

Found something interesting ?

• On-time delivery guarantee
• PhD-level professional writers
• Free Plagiarism Report

• 100% money-back guarantee
• Absolute Privacy & Confidentiality
• High Quality custom-written papers

Related Model Questions

Feel free to peruse our college and university model questions. If any our our assignment tasks interests you, click to place your order. Every paper is written by our professional essay writers from scratch to avoid plagiarism. We guarantee highest quality of work besides delivering your paper on time.

Grab your Discount!

25% Coupon Code: SAVE25
get 25% !!