## Repeat the corresponding segment of the correlation function periodically.

If a stationary random process is periodic, then we can represent it by a Fourier series with orthogonal coefficients. This is not true in general when the random process, though stationary, is not periodic. Thus, point out the fallacy in the following proposition, which purports to show that the Fourier series coefficients are always orthogonal: First take a segment of length T from a stationary random process  Repeat the corresponding segment of the correlation function periodically. This then corresponds to a periodic random process. If we expand this process in a Fourier series, its coefficients will be orthogonal. Furthermore, the periodic process and the original process will agree over the original time interval.

### Determine the outlet concentration x1 in the water solution and in the trichloroethane solution using an analytical equation.

Predicting Extraction for an Existing Tower with a Given Number of Steps. An existing tower contains 5.0 theoretical steps. It is desired to predict its performance under the following conditions….

### Calculate the minimum solvent that can be used. [Hint: In this case, the tie line through the feed L0 represents the condition for minimum solvent flow rate.

Minimum Solvent and Countercurrent Extraction of Acetone. An aqueous feed solution of 1000 kg/h containing 23.5 wt % acetone and 76.5 wt % water is being extracted in a countercurrent….

### Determine the break-point time, the fraction of total capacity used up to the break point, the length of the unused bed, and the saturation loading capacity of the solid.

Drying of Nitrogen and Scale-Up of a Column. Using molecular sieves, water vapor was removed from nitrogen gas in a packed bed (C1) at 28.3°C. The column height was 0.268….