#Sales Offer!| Get upto 25% Off:

Consider a 2-D object consisting of two triangle compartments, as shown in Figure P9.4. Suppose a solution containing a 511 KeV gamma ray emitting radionuclide with concentration f = 0.5 mCi/cm3 fills the lower triangle. The linear attenuation coefficients in the two regions are μ1 = 0.1 cm−1 and μ2 = 0.2 cm−1. Assume perfect detection in all cases and ignore the inverse square law effect.

(a) We image the radioactivity using a 2D SPECT scanner. Compute the projected radioactivities gSPECT(, 0◦) and gSPECT(, 180◦). The camera is located on the +y-axis looking down when θ = 0◦.

(b) Now assume the radionuclide in part (a) is replaced by a positron emitting radionuclide with the same concentration. Assume the linear attenuation coefficients in the two regions are the same as in part (a). If using a 2D PET scanner, compute gPET(, 0◦) and gPET(, 180◦).

(c) Explain why attenuation is not a big problem in PET.

Figure P9.4 An object with triangular compartments. See Problem 9.4.

Found something interesting ?

• On-time delivery guarantee
• PhD-level professional writers
• Free Plagiarism Report

• 100% money-back guarantee
• Absolute Privacy & Confidentiality
• High Quality custom-written papers

Related Model Questions

Feel free to peruse our college and university model questions. If any our our assignment tasks interests you, click to place your order. Every paper is written by our professional essay writers from scratch to avoid plagiarism. We guarantee highest quality of work besides delivering your paper on time.

Grab your Discount!

25% Coupon Code: SAVE25
get 25% !!