Design these bolts for infinite life. Specify their size, class, and preload.‡

1.       The forged-steel connecting rod for the engine of Problem 15-21 is split around the 38- mm-dia crankpin and fastened with two bolts and nuts that hold its two halves together. The total load on the two bolts varies from 0 to 8.5 kN each cycle. Design these bolts for infinite life. Specify their size, class, and preload.‡

2.       (See also Problem 4-33 on p. 233.) The bracket in Figure P15-2 (p. 924) is fastened to the wall by 4 cap screws equispaced on a 10-cm-dia bolt circle and arranged as shown. The wall is the same material as the bracket. The bracket is subjected to a static force F, where and the beam’s other data are given in the row(s) assigned from Table P15-1. Find the forces acting on each of the 4 cap screws due to this loading and choose a suitable cap screw diameter, length, and preload that will give a minimum safety factor of 2 for any possible mode of failure.‡

find the cost of your paper

Calculate the maximum achievable bridge out-of-balance voltage for an applied torque T of 103 N m given the following

Four strain gauges, with specification given below, are available to measure the torque on a cylindrical shaft 4 cm in diameter connecting a motor and load. (a) Draw clearly labelled….

Find the gain and phase characteristics of the maintaining amplifier.

A solid-state capacitive humidity sensor has a capacitance given by: C = 1.7 RH + 365pF where RH is the percentage relative humidity. The sensor has an associated parallel resistance….

calculate the mean velocity of the gas at maximum flow rate

A pitot tube is used to measure the mean velocity of high pressure gas in a 0.15 m diameter pipe. At maximum flow rate the mean pitot differential pressure is….